Graphene nanoribbons contact the molecular world

A collaboration between Spanish research institutes—led by the nanoGUNE Cooperative Research Center (CIC)—has achieved a breakthrough in so-called molecular electronics by devising a way to connect magnetic porphyrin molecules to graphene nanoribbons. These connections may be an example of how graphene could enable the potential of molecular electronics.

magnetic porphyrin molecule is connected to a GNR image

Porphyrin is an important molecule that is responsible for making photosynthesis possible in plants and transporting oxygen in the blood. Recently, researchers have been experimenting with "magnetic porphyrins" and discovered that they can form the basis of spintronic devices. Spintronics involves manipulating the spin of electrons and it is this spin that is responsible for magnetism: When a majority of electrons in a material have their spins pointing in the same direction, the material is magnetized. If you can move all the spins up or down and can read that direction, you can create the foundation of the “0” and “1” of digital logic.

MIT team designs a graphene-based system that draws power from daily temperature swings

Researchers at MIT have developed a novel graphene-assisted method to convert temperature fluctuations into electrical power. Thermoelectric devices usually generate power when one side of the device is a different temperature from the other. In the team's design, however, instead of requiring two different temperature inputs at the same time, the new system takes advantage of the swings in ambient temperature that occur during the day-night cycle.

MIT designs novel graphene-based thermoelectric device image

The new system, called a thermal resonator, could enable continuous, years-long operation of remote sensing systems, for example, without requiring other power sources or batteries, the researchers say.

A graphene-based device reveals the dynamics of single-molecule reactions

A team of international researchers has made a graphene-based device that captures the real-time dynamics of a classic chemical reaction at the single molecule level. Developed at Peking University, UCLA and the Institute Chinese Academy of Sciences, the method could shed light on the mechanism of chemical and biological processes.

Graphene device reveals step-by-step dynamics of single-molecule reaction image

The device consists of two graphene arrays that flank a single molecule covalently tied to each array through amide linkers. The molecule, 9-fluorenone, contains a carbonyl group situated astride three fused rings. The team submerged the device in a solution containing a catalyst and the reagent hydroxylamine, which reacts with 9-fluorenone’s carbonyl group. The reaction changes the electrical charge of 9-fluorenone, so the team could follow the nucleophilic addition reaction by monitoring current conducted by the graphene arrays.

Australian CSIRO develops promising graphene-based water filtration membrane

Scientists from the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) have used their own type of graphene called "GraphAir" to develop a water filter membrane that is reportedly capable of making water from Sydney Harbor drinkable.

CSIRO graphene membrane for water filtration image

The membrane makes water purification simpler, more effective and quicker, say CSIRO scientists. “Conventional water filter membranes used in water purification​ are made from polymers (plastics) and cannot handle a diverse mix of contaminants, they clog or allow contaminants to pass through, so they have to be separated out before the water is filtered”, they said. “This technology can create clean drinking water, regardless of how dirty it is, in a single step.”

Rice University team patterns graphene onto food, paper, cloth, cardboard

Scientists at Rice University have enhanced their formerly invented LIG technique to produce what may become a new class of edible electronics. The Rice lab of Prof. James Tour is investigating ways to write graphene patterns onto food and other materials to embed conductive identification tags and sensors into the products themselves.

Rice lab's graphene on toast image

"This is not ink," Tour said. "This is taking the material itself and converting it into graphene". The process is an extension of the Tour lab's perception that anything with adequate carbon content can be turned into graphene. In recent years, the lab has developed and expanded upon its method to make graphene foam by using a commercial laser to transform the top layer of an inexpensive polymer film.

Zenyatta to concentrate on GO-enhanced li-ion batteries, as part of a broader graphene development strategy

Zenyatta Ventures recently stated that it will concentrate efforts on the next generation lithium-ion battery (‘LIB’) utilizing advanced nanomaterials. Recent testing has shown Zenyatta’s graphene oxide combined with silicon to perform well in this new advanced battery being developed by an innovative materials company in the United States.

This advanced battery program is part of a broader graphene development strategy; Along with the new LIB’s, the Company will also focus on using its graphene for enhancing present day composite materials like concrete, rubber and plastic.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!