Article last updated on: Jan 29, 2019

The Graphene Flagship is a Future and Emerging Technology Flagship project by the European Commission. With a budget of €1 billion, the Graphene Flagship represents a new form of joint, coordinated research on a large scale, forming Europe's biggest ever research initiative.

Graphene flagship logo 2017

Launched in 2013, the Graphene Flagship’s mission is to advance graphene commercialization and take graphene and related materials from academic laboratories to society within 10 years, while revolutionizing entire industries and creating economic growth and new jobs in Europe.

The core consortium consists of about 150 academic and industrial research groups in over 20 countries. In addition, the project has a growing number of associated members that will be incorporated in the scientific and technological work packages from the Horizon 2020 phase (1 April 2016 – 31 March 2018). The project started in a ramp-up phase (October 2013 till the end of March 2016), then planned to enter into the steady-state phase (2016-2020).

The research effort covers the entire value chain from materials production to components and system integration, and targets a number of specific goals that exploit the unique properties of graphene. The Graphene Flagship is coordinated by Chalmers University of Technology, Gothenburg, Sweden.



The latest Graphene Flagship news:

Graphene enables low-dimensional spintronics at room temperature

Graphene Flagship researchers produced graphene-based spintronics devices that utilize both electron charge and spin at room temperature. Demonstrating the spin’s feasibility for bridging distances of up to several micrometres, these results may open the door to new possibilities for integrating information-processing and storage in a single chip.

The Graphene Flagship program recognizes the potential of spintronics devices made from graphene-related materials. Researchers from different universities successfully showed that it is possible to manipulate graphene’s spin properties in a controlled manner at room temperature. These results inspire new directions in the development of spin-logic devices and quantum computing. “With miniaturization a major driving force behind the electronics industry, graphene opens new possibilities for compacting spin-logic operations with magnetic memory elements in a single platform,” notes Catalan Institution for Research and Advanced Studies (ICREA) Research Professor Stephan Roche, who has been leading the Graphene Flagships Spintronics Work Package since its inception.

Graphene shows promise for high-speed optical communications

Researchers affiliated with the Graphene Flagship have demonstrated novel high-speed graphene-based data communication at a data rate of 50 Gb/s. Integrating graphene sheets into silicon photonics could form the basis for next-generation data communications.

Graphene's spectacular performance in high-speed optical communications image

The project was a collaboration between Flagship partners AMO GmbH (Germany), the National Inter-University Consortium for Telecommunications (CNIT) (Italy), Ericsson (Sweden), Ghent University (Belgium), the Institute of Photonic Sciences (ICFO) (Spain), imec (Belgium), Nokia (Germany and Italy), the Vienna University of Technology (TU Wien) (Austria) and the University of Cambridge (UK).

Graphene-based implant that records brain activity at low frequencies may change our understanding of the brain

Researchers from ICN2, IMB-CNM, CSIC, IDIBAPS, and ICFO have designed a graphene-based implant able to record electrical activity in the brain at extremely low frequencies and over large areas.

Graphene-based implant that records brain activity at low frequencies may change our understanding of the brain image

The team explains that electrode arrays currently used to record the brain’s electrical activity are only able to detect activity over a certain frequency threshold. The new graphene-based technology presented in this work overcomes this technical limitation, allowing access to information found below 0.1 Hz, while at the same time paving the way for future brain-computer interfaces.

Graphene Flagship partners present a graphene-enhanced leading edge for the Airbus A350

Graphene Flagship partners Aernnova, Grupo Antolin-Ingenieria and Airbus have produced a leading edge for the Airbus A350 horizontal tail plane using graphene-enhanced composites. As the first part of the tail plane to contact air, the leading edge is subjected to extreme temperatures caused by compressive heating of the air ahead of the wing. Thus, it must possess excellent mechanical and thermal properties.

Graphene Flagship partners produced a leading edge for the Airbus A350 horizontal tail plane using graphene-enhanced composites image

“Aernnova supplied the resin to Grupo Antolin-Ingenieria who added graphene directly to the resin and applied milling forces,” said Ana Reguero of Aernnova. “This creates small graphene particles – an important step to get good graphene infiltration within the resin, avoiding unwanted impurities, such as solvents, which can alter the viscosity of the resin. It is important to maintain the correct viscosity of the resin to ensure the optimal outcome during the resin transfer molding of the leading edge.”

Thales and M-SOLV develop large-scale spray coating tool for graphene supercapacitors

Graphene Flagship partners Thales and M-SOLV have developed a large-scale spray coating tool, reportedly capable of meeting the high volume manufacturing requirements for high power graphene supercapacitors to be used in aerospace applications.

Thales has been working on incorporating graphene into supercapacitors since the start of the Graphene Flagship and has been able to significantly increase the storage potential of supercapacitor devices. "Using graphene, we have been able to increase the power of supercapacitors by five times. We deposited our supercapacitors using spray coating, enabling us to use a variety of substrates, thus allowing us to develop flexible, high power supercapacitors," said Dr. Paolo Bondavalli, Thales Research and Technology.