Article last updated on: Jan 29, 2019

The latest graphene ink news:

San Diego team creates LIG graphene composites for printed, stretchable wearables

Researchers at Joseph Wang's Laboratory for Nanobioelectronics at UC San Diego demonstrated the synthesis of high-performance stretchable graphene ink using a facile, scalable, and low-cost laser induction method for the synthesis of the graphene component.

The processing steps for screen-printed flexible supercapacitor fabricated from laser-induced graphene ink imageThe processing steps for screen-printed flexible supercapacitor fabricated from laser-induced graphene ink

As a proof-of-concept, the researchers fabricated a stretchable micro-supercapacitor (S-MSC) demonstrating high capacitance. This is said to be the first example of using laser-induced graphene in the form of a powder preparation of graphene-based inks and subsequently for use in screen-printing of S-MSC.

Grafoid launches a new company to focus on graphene 3D Printing

Canadian graphene developer Grafoid announced that it launched a new company, called Grafprint3D, to develop and produce 3D printing materials based on Grafoid's MesoGraf graphene - although Grafprint3D's current materials are actually graphene inks for screen printing and inkjet printing and not 3D printed ones.

Grafprint3D graphene inks photo (May 2019)



Grafoid says that initially the new company will focus on wearable device fabrication with biocompatible polymers, biomaterial substrates for cell therapy engineering research, and rapid product prototyping with printable advanced nanomaterials.

Researchers develop washable, wearable graphene capacitors that can be woven directly into clothes

Researchers at the University of Cambridge and Jiangnan University in China have developed graphene-enhanced wearable electronic components incorporated directly into fabrics. The devices could be used for flexible circuits, healthcare monitoring, energy conversion, and other applications.

The researchers have shown how graphene and other related materials can be directly incorporated into fabrics to produce charge storage elements such as capacitors, paving the way to textile-based power supplies which are washable, flexible and comfortable to wear.

Graphene inks help stabilize the stability of perovskite solar cells

Researchers from the Graphene Flagship have developed hybrids of graphene and molybdenum disulphide quantum dots to stabilize perovskite solar cells (PSCs). PSCs are a novel type of solar cells which are efficient, relatively easy to produce, made with cheaper materials and, due to their flexibility, can be used in locations where traditional silicon solar cells cannot be placed.

Graphene inks help stabilize the stability of perovskite solar cells

A collaboration between the Graphene Flagship Partners Istituto Italiano di Technologia, University of Rome Tor Vergata, and BeDimensional resulted in a novel approach based on graphene and related materials to stabilize PSCs, thus addressing the stability issue of PSCs, a major hurdle hindering their commercialization.

The Graphene Flagship announces its 2019-2030 graphene application roadmap

The EU Graphene Flagship has published its graphene application roadmap, showing when the flagship expects different graphene applications to mature and enter the market.

Graphene Flagship roadmap 2019-2030 photoAs can be seen in the roadmap above (click here for a larger image), the first applications that are being commercialized now are applications such as composite functional coatings, graphene batteries, low-cost printable electronics (based on graphene inks), photodetectors and biosensors.