BioMed X completes development of graphene-based biosensors for near-patient testing

BioMed X has announced the completion of its first research collaboration project with Roche Diagnostics in the field of nanomaterial-based biosensors for near patient testing. BioMed X successfully achieved the proof of principle for a new sensor platform allowing the analysis of several different parameters from blood samples with one single device.

The project was initiated in 2015 as a call for application using BioMed X’s proprietary crowdsourcing platform for project proposals. As a result of an international innovation challenge, a team of early-career researchers from five different countries worked in Germany on the design of a field effect transistor-based multimodal sensing platform for proteins, blood gases and electrolytes, metabolites and enzymes with a single-use disposable material for point-of-care diagnostics.

Graphene-based retinal implants project i-VISION awarded million euro “la Caixa” Health Research Grant

Innovative graphene-based retinal implants to restore vision, part of the project Adaptive Retinal Implant Technology for Vision Restoration (i-VISION), have been awarded a million euro “la Caixa” Health Research Grant.

The i-VISION project is led by the Catalan Institute of Nanoscience and Nanotechnology (ICN2) in Barcelona, a BIST center. The work is the follow-up of the BIST Ignite THEIA project, in which the ICN2, IFAE, ICFO and Barraquer Ophthalmological Center began their research into this new generation of retinal prostheses. THEIA was awarded funding through two successive BIST Ignite grants, in 2016 and in 2017.

ICFO designs new graphene-based flexible and transparent wearable health trackers

ICFO researchers have recently demonstrated a new class of graphene-based flexible and transparent wearable devices that are conformable to the skin and can provide continuous and accurate measurements of multiple human vital signs.

ICFO's new flexible and transparent graphene health tracker image

These devices can measure heart rate, respiration rate and blood pulse oxygenation, as well as exposure to UV radiation from the sun. While the device measures the different parameters, the read-out is visualized and stored on a mobile phone interface connected to the wearable via Bluetooth. In addition, the device can operate battery-free since it is charged wirelessly through the phone.

Graphene to enable super-resolution microscopy

Researchers at the University of Göttingen have developed a new method that utilizes the unusual properties of graphene to electromagnetically interact with fluorescing (light-emitting) molecules. This method allows scientists to optically measure extremely small distances, in the order of 1 ångström (one ten-billionth of a meter) with high accuracy and reproducibility for the first time. This enabled researchers to optically measure the thickness of lipid bilayers, the stuff that makes the membranes of all living cells.

Single molecules successfully demostrated imageOn the left: Image of single molecules on the graphene sheet. Such images allow scientists to determine the position and orientation for each molecule. Comparison with the expected image (right) shows excellent agreement. Credit: University of Göttingen

The University of Göttingen team, led by Professor Enderlein, used a single sheet of graphene, just one atom thick (0.34 nm), to modulate the emission of light-emitting (fluorescent) molecules when they came close to the graphene sheet. The excellent optical transparency of graphene and its capability to modulate through space the molecules' emission made it an extremely sensitive tool for measuring the distance of single molecules from the graphene sheet. The accuracy of this method is so good that even the slightest distance changes of around 1 ångström (this is about the diameter of an atom or half a millionth of a human hair) can be resolved. The scientists were able to show this by depositing single molecules above a graphene layer. They could then determine their distance by monitoring and evaluating their light emission.

Graphene oxide to help regenerate cartilage

Researchers from the University of Manchester have found that incorporating graphene oxide into three-dimensional scaffolds that support regenerating cartilage could offer a new means of delivering vital growth factors.

Schematic for GO-assisted chondrogenesis image

Damage to cartilage from injury or disease is difficult to remedy because of the material’s low capacity for self-repair. Future treatments hope to harness tissue-engineering approaches, introducing hydrogel scaffolds impregnated with stem cells that can proliferate and differentiate into chondrocytes, to make new cartilage. This strategy requires the appropriate biological cues to drive cell differentiation, but the results of various attempts to achieve sustained delivery of such signals have been disappointing.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!