Pristine graphene could lead to improved solar cells and photodetectors

An international research team, co-led by researchers at the University of California, Riverside, which also included researchers at MIT, Nanyang Technological University, Singapore; Institute of High Performance Computing, Singapore; UC Berkeley; and National Institute for Materials Science, Japan, has found a new mechanism for highly-efficient charge and energy flow in graphene, opening the door to new types of light-harvesting devices.

The researchers made pristine graphene into different geometric shapes, connecting narrow ribbons and crosses to wide open rectangular regions. They found that when light illuminated constricted areas, such as the region where a narrow ribbon connected two wide regions, a large light-induced current, or photocurrent, was detected.

MIT researchers create synthetic cells through controlled fracturing of graphene

MIT engineers recently managed to create cell-sized robots that could collect data about their environment, but were quite tricky to manufacture. Now, the team has found a way to mass produce these synthetic cells (syncells) through controlled fracturing of graphene.

MIT creates synthetic cells through controlled fracturing of graphene image

The previously developed MIT robots were so small, that there was no point trying to steer them, but they could still sense and observe, scanning their surroundings and storing data for long periods of time. Later, they could be filtered out and analyzed to get a reading of water quality, for example, or biomarkers for disease in a patient's bloodstream.

MIT to receive $1,500,000 in funding from the DOE for graphene-enabled solar applications development

MIT recently received $1,500,000 in funding from the U.S. Department of Energy for its project titled "Low-Cost, High-Efficiency III-V Photovoltaics Enabled By Remote Epitaxy through Graphene"

This funding was a part of the Solar Energy Technologies Office Fiscal Year 2018 (SETO FY2018) funding program, which addresses the affordability, flexibility, and performance of solar technologies. The total funding was $53 million for 53 projects.

Researchers develop a technique to fabricate large squares of graphene riddled with controlled holes

Researchers at MIT have found a way to directly “pinprick” microscopic holes into graphene as the material is grown in the lab. Using this technique, they have fabricated relatively large sheets of graphene (roughly the size of a postage stamp), with pores that could make filtering certain molecules out of solutions vastly more efficient.

Holes would typically be considered unwanted defects, but the MIT team has found that certain defects in graphene can be an advantage in fields such as dialysis. Typically, much thicker polymer membranes are used in laboratories to filter out specific molecules from solution, such as proteins, amino acids, chemicals, and salts. If it could be tailored with selectively-sized pores that let through certain molecules but not others, graphene could substantially improve separation membrane technology.

Graphenea and MIT develop sensors based on graphene and porphyrins for ammonia detection

MIT and Graphenea have developed an array of graphene sensors for sensitive and selective detection of ammonia. The array consists of 160 graphene pixels, allowing large statistics that result in improved sensing performance. The sensors are extensively tested for various real-life operational conditions, which seems to be a step forward to practical use.

Graphenenea and MIT's graphene and porphyrins sensors for ammonia detection image

The sensors are built by attaching porphyrins, a class of organic molecules, to the graphene surface. Porphyrins are particularly well-matched to graphene sensors because they provide excellent sensitivity while producing minimal perturbation to graphene’s outstanding electrical properties. When ammonia molecules attach to porphyrins, the compound becomes a strong dipole that changes electrical properties of the graphene. This electrical change is detected as a sign of the presence of ammonia.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!