Graphene-based retinal implants project i-VISION awarded million euro “la Caixa” Health Research Grant

Innovative graphene-based retinal implants to restore vision, part of the project Adaptive Retinal Implant Technology for Vision Restoration (i-VISION), have been awarded a million euro “la Caixa” Health Research Grant.

The i-VISION project is led by the Catalan Institute of Nanoscience and Nanotechnology (ICN2) in Barcelona, a BIST center. The work is the follow-up of the BIST Ignite THEIA project, in which the ICN2, IFAE, ICFO and Barraquer Ophthalmological Center began their research into this new generation of retinal prostheses. THEIA was awarded funding through two successive BIST Ignite grants, in 2016 and in 2017.

Researchers reach graphene-based junctions that are both electrically and mechanically stable

A research team jointly led by University of Warwick and EMPA has tackled a challenging issue of stability and reproducibility in working with graphene, that meant that graphene-based junctions were either mechanically stable or electrically stable but not both at the same time.

Researchers tackle a known limitation of graphene junctions imageCredit: University of Warwick

Graphene and graphene like molecules are attractive choices for electronic components in molecular devices, but have proven very challenging to use in large scale production of molecular devices that will work and be robust at room temperatures. The joint research team from the University of Warwick, EMPA and Lancaster and Bern Universities has reached both electrical and mechanical stability in graphene-based junctions.

ICFO designs new graphene-based flexible and transparent wearable health trackers

ICFO researchers have recently demonstrated a new class of graphene-based flexible and transparent wearable devices that are conformable to the skin and can provide continuous and accurate measurements of multiple human vital signs.

ICFO's new flexible and transparent graphene health tracker image

These devices can measure heart rate, respiration rate and blood pulse oxygenation, as well as exposure to UV radiation from the sun. While the device measures the different parameters, the read-out is visualized and stored on a mobile phone interface connected to the wearable via Bluetooth. In addition, the device can operate battery-free since it is charged wirelessly through the phone.

Chalmers team designs a graphene-based detector that may revolutionize space telescopes

Researchers from Chalmers University of Technology have demonstrated a graphene-based detector with the potential to revolutionize the sensors used in next-generation space telescopes. Beyond superconductors, there are few materials that can meet the requirements for making ultra-sensitive and fast terahertz (THz) detectors for astronomy. Chalmers researchers have shown that engineered graphene adds a new material paradigm for THz heterodyne detection.

"Graphene might be the only known material that remains an excellent conductor of electricity/heat even when having, effectively, no electrons. We have reached a near zero-electron scenario in graphene, also called Dirac point, by assembling electron-accepting molecules on its surface. Our results show that graphene is an exceptionally good material for THz heterodyne detection when doped to the Dirac point," says Samuel Lara-Avila, assistant professor at the Quantum Device Physics Laboratory and lead author of the paper.

Korean scientists develop graphene electrode to enable next-gen perovskite solar cells

Several research institutions in South Korea are actively conducting research and development on next-generation solar cells, heightening expectations for commercialization. The research team led by Prof. Yoon Soon-gil of Chungnam National University has developed a new graphene electrode to produce perovskite solar cells at a low temperature. In addition, the team led by Prof. Choi Kyoung-jin of the School of Materials Science and Engineering at UNIST has developed a new concept tandem solar cell using transparent conductive adhesives (TCA).

The graphene electrode developed by Professor Yoon’s team can help create a perovskite solar cell at a low temperature and can raise both safety and economic efficiency.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!