Graphene-Info: the graphene experts

Graphene-Info is the world's leading graphene industry portal since 2009. We provide a multitude of services to the graphene market based on our extensive knowledge hub and industry connections.

Graphene is the strongest, thinnest and most conductive material known to man. With such remarkable properties, it is no wonder that graphene enables exciting new applications in electronics, energy, medicine, aerospace and many more markets.

Recent graphene News

Terahertz imaging of graphene could promote industrialization

A collaborative team of Graphene Flagship partners from DTU, Denmark, IIT, Italy, Aalto University, Finland, AIXTRON, UK, imec, Belgium, Graphenea, Spain, Warsaw University, Poland, and Thales R&T, France, as well as collaborators in China, Korea and the US, has come together to develop and mature terahertz spectroscopy techniques, that can penetrate graphene films and enable the creation of detailed maps of their electrical quality, without damaging or contaminating the material. The result of this collaborating is a novel measurement tool for graphene characterization.

Graphene is often ‘sandwiched’ between many different layers and materials to be used in electronic and photonic devices, which complicates the process of quality assessment. Terahertz spectroscopy can help by imaging the encapsulated materials and revealing the quality of the graphene underneath, exposing imperfections at critical points in the fabrication process. It is a fast, non-destructive technology that probes the electrical properties of graphene and layered materials, with no need for direct contact.

Haydale reports its interim results for H1 FY2021

Haydale logoHaydale has announces its financial results for H1 FY2021 (which ended on December 2020 - revenues were £1.28 million, down 5% from last year, while operating loss was reduced by 34%. At the end of December 2020, Haydale had £1.88 in cash and equivalents.

Haydale says that even though the covid-19 pandemic impacted several of its key markets, the company observed greater interest from existing and new customers. The company anticipates that full FY2021 revenue will be in line with FY2020, while lower operating costs will lead to a reduced operating loss.

Qurv Technologies wins "Best Imaging Technology" award at SEMI's Technology Unites Global Summit

Qurv Technologies logo imageQurv Technologies, a Spain-based startup developing wide-spectrum image sensors based on graphene and quantum-dot technologies, has won the Imaging Sensors Technology Showcase at the Technology Unites Global Summit.

The Qurv wide-spectrum image sensor was recognized as the best imaging technology. The selection of winners (Infineon Technologies also won an award for its environmental sensor as the leading MEMS technology) was made from five finalists in each category in a vote by a committee of industry experts.

Directa Plus signs agreements with NexTech Batteries for lithium sulphur batteries

Directa Plus logoDirecta Plus progressed its partnership with U.S-based Lithium Sulphur batteries company NexTech Batteries by signing a 3-year Supply and Strategic R&D agreement for developing next-generation batteries for green mobility, grid storage, aviation and consumer products.

The Supply Agreement, based on a worldwide bilateral exclusivity in the lithium battery field, has an initial duration of three years, with an option to be extended for two years longer. The R&D Agreement, also with a duration of three years, provides for Joint Lab activities with the intention of developing new specific grades of G+ graphene nanoplatelets. Both parties will dedicate selected scientists from their R&D teams and part of their respective facilities to the enterprise.

Novel graphene-based technique enables imaging living, wet cells

Researchers from DGIST have developed a graphene-based method to keep living, wet cells viable in an ultra-high-vacuum environment, allowing an accurate high-resolution visualization of the undistorted molecular structure and distribution of lipids in cell membranes. This approach could enhance existing bioimaging abilities, thus improving the understanding of mechanisms underlying complex diseases such as cancers and Alzheimer’s.

Nanoimaging is used to structurally characterize subcellular components and cellular molecules such as cholesterol and fatty acids. But it is not perfect, as Professor Dae Won Moon of Daegu Gyeongbuk Institute of Technology (DGIST), Korea, lead scientist in a recent groundbreaking study advancing the field, explains: “Most advanced nanoimaging techniques use accelerated electron or ion beams in ultra-high-vacuum environments. To introduce cells into such an environment, one must chemically fix and physically freeze or dry them. But such processes deteriorate the cells’ original molecular composition and distribution.”

Researchers report a highly efficient graphene/hBN-based electro-absorption modulator

ICFO researchers led by Professor Frank Koppens, in collaboration with researchers from Universita di Pisa, CNIT, Ghent University-IMEC, and NIMS, have reported a novel electro-absorption (EA) modulator capable of showing a 3-fold increase in static and dynamic modulation efficiency while maintaining the high-speed, a value that surpasses those for previously reported graphene EA modulators.

 Electrical connections and schematic cross-section of an EA modulator with an hBN–HfO2–hBN dielectric image

To achieve this, the team of researchers developed a high-quality graphene-based electro-absorption modulator by combining high-quality graphene and a high-k dielectric, also used in microelectronics. The high quality of the graphene was achieved by integrating it with the 2d-material dielectric hexagonal boron nitride (hBN).

Researchers examine 'Kagome' graphene and report promising results

Researchers from the Department of Physics and the Swiss Nanoscience Institute at the University of Basel, working in collaboration with the University of Bern, have recently produced and studied a compound referred to as "kagome graphene", that consists of a regular pattern of hexagons and equilateral triangles that surround one another. The name kagome comes from the old Japanese art of kagome weaving, in which baskets are woven in the same pattern.

Kagome graphene revealed to have fascinating properties imageKagome graphene is characterized by a regular lattice of hexagons and triangles. Credit: R. Pawlak, Department of Physics, University of Basel

The team's measurements have reportedly delivered promising results that point to unusual electrical or magnetic properties of the material.