Article last updated on: Jan 29, 2019

What is graphene?

Graphene is a material made of carbon atoms that are bonded together in a repeating pattern of hexagons. Graphene is so thin that it is considered two dimensional. Graphene's flat honeycomb pattern gives it many extraordinary characteristics, such as being the strongest material in the world, as well as one of the lightest, most conductive and transparent. Graphene has endless potential applications, in almost every industry (like electronics, medicine, aviation and much more).

An ideal graphene sheet image

The single layers of carbon atoms provide the basis for many other materials. Graphite, like the substance found in pencil lead, is formed by stacked graphene. Carbon nanotubes are made of rolled graphene and are used in many emerging applications from sports gear to biomedicine.

What is graphene oxide?

As graphene is expensive and relatively hard to produce, great efforts are made to find effective yet inexpensive ways to make and use graphene derivatives or related materials. Graphene oxide (GO) is one of those materials - it is a single-atomic layered material, made by the powerful oxidation of graphite, which is cheap and abundant. Graphene oxide is an oxidized form of graphene, laced with oxygen-containing groups. It is considered easy to process since it is dispersible in water (and other solvents), and it can even be used to make graphene. Graphene oxide is not a good conductor, but processes exist to augment its properties. It is commonly sold in powder form, dispersed, or as a coating on substrates.

Graphene Oxide structure

Graphene oxide is synthesized using four basic methods: Staudenmaier, Hofmann, Brodie and Hummers. Many variations of these methods exist, with improvements constantly being explored to achieve better results and cheaper processes. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the graphene oxide.



Graphene oxide uses

Graphene Oxide films can be deposited on essentially any substrate, and later converted into a conductor. This is why GO is especially fit for use in the production of transparent conductive films, like the ones used for flexible electronics, solar cells, chemical sensors and more. GO is even studied as a tin-oxide (ITO) replacement in batteries and touch screens.

Graphene Oxide has a high surface area, and so it can be fit for use as electrode material for batteries, capacitors and solar cells. Graphene Oxide is cheaper and easier to manufacture than graphene, and so may enter mass production and use sooner.

GO can easily be mixed with different polymers and other materials, and enhance properties of composite materials like tensile strength, elasticity, conductivity and more. In solid form, Graphene Oxide flakes attach one to another to form thin and stable flat structures that can be folded, wrinkled, and stretched. Such Graphene Oxide structures can be used for applications like hydrogen storage, ion conductors and nanofiltration membranes.

Graphene oxide is fluorescent, which makes it especially appropriate for various medical applications. bio-sensing and disease detection, drug-carriers and antibacterial materials are just some of the possibilities GO holds for the biomedical field.

Buy Graphene Oxide

Graphene oxide is relatively affordable and easy to find, with many companies that sell it. It does, however, get confusing since different companies offer products that vary in quality, price, form and more - making the choice of a specific product challenging. If you are interested in buying GO, contact Graphene-Info for advisement on the right GO for your exact needs!

Further reading

The latest graphene oxide news:

Graphene Leaders Canada provides financial and commercial updates

Graphene Leaders Canada logo (2017)Graphene Leaders Canada (GLC) has announced that it has been awarded $350,000 CAD (around $261,000 USD) grant funding for a joint project under the National Research Council – United Kingdom (UK) Research Institute (NRC-UKRI) Research and Innovation Program. This funding will support GLC’s “Scaling of Graphene Oxide” towards the development of GLC’s Environmental platform of products.

“This project will support scale up activities of graphene oxide with a focus on developing a cost effective, scalable production method aimed at commercializing our environmental platform of products for air and water treatment,” said Dr. Leah Coumont, GLC’s Director of R&D.

Graphene oxide layers made to mimic biological channels may clean up pharmaceuticals production

KAUST researchers have tailored the structure of graphene-oxide layers to mimic the shape of biological channels, creating ultra-thin membranes to rapidly separate chemical mixtures. This may have the potential to inspire new materials to clean up chemical and pharmaceutical production.

2D-dual-spacing channel membranes for high performance organic solvent nanofiltration image

"In making pharmaceuticals and other chemicals, separating mixtures of organic molecules is an essential and tedious task," says Shaofei Wang, postdoctoral researcher in Suzana Nuñes lab at KAUST. One option to make these chemical separations faster and more efficient is through selectively permeable membranes, which feature tailored nanoscale channels that separate molecules by size.

Graphene oxide assists in purifying water without chlorination

Scientists from the National University of Science and Technology "MISIS" together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have shown a way for graphene oxide to purify water, making it drinkable, without further chlorination. "Capturing" bacterial cells, it forms flakes that can be easily extracted from the water.

Graphene oxide helps purify water image1) Graphene oxide, added in water 2) Water after purification with graphene oxide 3) Graphene oxide 'flakes' with bacteria before extraction

The team has conducted an experiment, injecting graphene oxide into solutions (nutrient medium and the saline) containing E.coli. Under the terms of the experiment, saline "simulated" water, and the nutrient medium simulated human body medium. The results showed that the graphene oxide along with the living and the destroyed bacteria form flakes inside the solutions. The resulting mass can be easily extracted, making water almost completely free of bacteria. If the extracted mass is then treated with ultrasound, the graphene can be separated and reused.

Abalonyx reports strong revenue growth in 2018

Norway-based Graphene Oxide developer Abalonyx reports that its graphene oxide sales have increased by about 80 % in 2018, and this follows a 70% increase in 2017 compared to 2016. The company expects to see further strong sales growth in 2019.

Graphene Oxide production cost estimate (Sep 2018, Abalonyx)Abalonyx says that over 90% of its sales derive from returning industrial partners. The company also revealed two of these customers: ORA Graphene Audio with its GO membranes and Provexa AB which developed an anti-corrosion protection coating that is now being used on Scania trucks.

Graphene-Info's Batteries, Graphene Oxide, Lighting, Displays and Graphene Investments Market Reports updated to April 2019

Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to April 2019.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!