Article last updated on: Dec 09, 2019

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - to both electricity and heat. All this properties are exciting researchers and businesses around the world - as graphene has the potential the revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and so can be used to enhance the strength of other materials. Dozens of researches have demonstrated that adding even a trade amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use less amount of material to achieve the same strength).

applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the world's most conductive material to heat. As graphene is also strong and light, it means that it is a great material to make heat-spreading solutions, such as heat sinks or films used to dissipate heat. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices. Huawei's latest smartphones, for example, adopt graphene-based thermal films.

graphene-bulb-demonstration-image



Energy storage

Because graphene is the world's thinnest material, it is also the material with the highest surface-area to volume ratio. This makes graphene a very promising material to be used in batteries and supercapacitors. Graphene may enable batteries and supercapacitors (and even fuel-cells) that can store more energy - and charge faster, too.

Graphene battery advantages imageThe advantages of graphene batteries

Coatings ,sensors, electronics and more

Graphene has a lot of other promising applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

The latest Graphene Application news:

Special substrates enable large single crystal bi-/tri-layer graphene growth

Researchers of the Center for Multidimensional Carbon Materials (CMCM) within the Institute for Basic Science (IBS, South Korea), in collaboration with UNIST and Sungkyunkwan University teams, have reported the fabrication and use of single crystal copper-nickel alloy foil substrates for the growth of large-area, single crystal bilayer and trilayer graphene films.

The growth of large area graphene films with a precisely controlled number of layers and stacking order can open new possibilities in electronics and photonics but remains a challenge. This study showed an example of the synthesis of bi- and trilayer graphene sheets larger than a centimeter, with layers piled up in a specific manner, namely AB- and ABA-stacking.

UK-based rocket company Orbex develops graphene-enhanced rocket

Orbex, a UK-based private, low-cost orbital launch services company, has developed what it calls an "advanced, low carbon, high performance micro-launch" rocket called "Orbex Prime" and states that it already has a customer to fly on it.

Orbex develops graphene-enhanced rocket image

Built with 3D-printed engines and a carbon fiber-and-graphene body, Orbex Prime will utilize renewable "bio-propane" as its fuel of choice. The two-stage rocket will be designed to carry up to 150 kilograms of payload, contained within a 1.3-meter fairing, into Sun Synchronous Orbit. Orbex even says its Prime rocket will be "80% reusable", although it is rather unclear how this would be executed.

New method uses hydrogen plasma to smooth out wrinkles in graphene

Researchers from Nanjing University in China have developed a method to make large graphene films free of any wrinkles. The ultra-smooth films could enable large-scale production of electronic devices that harness the unique physical and chemical properties of graphene and other 2D materials.

Wrinkles  disappear when graphene is treated with a hydrogen plasma imageWrinkles in graphene films grown via chemical vapor deposition appear as jagged white lines at the top of this atomic force microscope image (left), but they disappear when the material is treated with a hydrogen plasma (right). Credit: Nature

Chemical vapor deposition (CVD) is the best-known method for making high-quality graphene sheets. It typically involves growing graphene by pumping methane gas onto copper substrates heated to temperatures around 1,000 °C, and then transferring the graphene to another surface such as silicon. But some of the graphene sticks to the copper surface, and as the graphene and copper expand and contract at different rates, wrinkles form in the graphene sheets. Such wrinkles often present hurdles for charge carriers and lower the film’s conductivity. Other researchers have tried to reduce wrinkles using low growth temperatures or special copper substrates, but the wrinkles have proven difficult to eliminate entirely, according to Libo Gao, a physicist at Nanjing University.

Log9 Materials bets on graphene-based aluminium fuel cells for future EVs

India-based Log9 Materials, believes that the key to better EVs is to focus on energy-generation, instead of energy storage. Log9 Materials says that a car powered by aluminium fuel cells can have a range of 1000 km post which the aluminium plates can be replaced within minutes.

According to Log9, aluminium fuel cells would primarily use three components – aluminium, water, and carbon in the form of graphene. In simple words, there’s water between layers of graphene, and when aluminium comes in contact with water, it corrodes – releasing energy. Log9 explains that procuring raw materials for aluminium fuel cells is much simpler than those for lithium-ion batteries which use lithium and cobalt, so manufacturing cost can be considerably lower for aluminium fuel cells than lithium-ion battery packs.

New graphene-based lithium-air battery may enable longer-running electric cars

Researchers at the Korean Daegu Gyeongbuk Institute of Science and Technology (DGIST) have fabricated an electrode using nickel cobalt sulphide nanoflakes on a sulfur-doped graphene, leading to a long-life battery with high discharge capacity. This improvement of lithium-air batteries' performance may bring us a step closer to electric cars that can use oxygen to run longer before they need to recharge.

"The driving distance of electric cars running on lithium-ion batteries is about 300 kilometers," says chemist Sangaraju Shanmugam of DGIST. "This means it's difficult to make a round trip between Seoul and Busan on these batteries. This has led to research on lithium-air batteries, due to their ability so store more energy and thus provide longer mileage."