2D Fab collaborates with SAAB and Blackwing to develop graphene-enhanced components for the aviation industry

2D Fab AB logo2D fab, together with SAAB and Blackwing Sweden, developed new graphene-enhanced components for the aviation industry that offer increased lightning strike protection and strength.

The project, called Multigraph, was launched in 2017 with the mission to create better components for the aviation industry. The aim was to use graphene’s multifunctional properties to increase the mechanical strength and electrical conductivity of the materials used, the latter reducing the amount of maintenance required due to lightning strikes.

Haydale launches functionalized graphene prepreg for lightning strike protection

Haydale logoHaydale has launched a range of graphene-enhanced prepreg materials for lightning-strike protection, utilizing functionalized graphene to improve the electrical conductivity.

The material has been developed in collaboration with Airbus UK, BAE Systems, GE Aviation and Element Materials Technology Warwick, within the NATEP-supported GraCELs project where the first iterations of materials were developed and subjected to lighting strike tests. The consortium is now looking to manufacture a demonstrator component using the materials developed to establish composite manufacturing protocols as a showcase part for commercial purposes.

Graphene oxide proposed as significant component of interstellar dust

Peter J Sarre, Professor of Chemistry and Molecular Astrophysics at the University of Nottingham in the UK, has released a fascinating work that infers, based on previously unassigned optical and infrared astronomical observations and comparison with laboratory data on graphene oxide (GO), that GO is a significant component of interstellar dust.

Interstellar dust image

Dust particles play a major role in the formation, evolution and chemistry of interstellar clouds, stars, and planetary systems. Commonly identified forms include amorphous and crystalline carbon-rich particles and silicates. Also present in many astrophysical environments are polycyclic aromatic hydrocarbons (PAHs), detected through their infrared emission, and which are essentially small flakes of graphene.

Rice team designs graphene-based air filter that grabs and zaps pathogens

Rice University team under chemist James Tour has transformed their laser-induced graphene (LIG) into self-sterilizing filters that grab pathogens out of the air and kill them with small pulses of electricity. This may be of special interest to hospitals, where according to the Centers for Disease Control and Prevention, patients have a 1-in-31 chance of acquiring a potentially antibiotic-resistant infection during hospitalization.

Rice team creates self-sterilizing LIG air filters that show potential for use in hospitals image

The device reportedly captures bacteria, fungi, spores, prions, endotoxins and other biological contaminants carried by droplets, aerosols and particulate matter.

AGM and Infinite Composites develop graphene composite material for space exploration

Applied Graphene Materials logoApplied Graphene Materials (AGM) and pressure vessel manufacturer Infinite Composites Technologies have collaborated to develop a composite material for space exploration.

The partnership saw the use of AGM’s graphene technology in two resin systems for cryogenic pressure tanks. These vessels are currently being explored by Nasa for use in several spaceflight missions, as well as International Space Station Experiments (MISSE), Artemis and Lunar Gateway programmes.